Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 11213, 2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35780185

RESUMO

Vesicle budding and fusion in eukaryotes depend on a suite of protein types, such as Arfs, Rabs, coats and SNAREs. Distinct paralogs of these proteins act at distinct intracellular locations, suggesting a link between gene duplication and the expansion of vesicle traffic pathways. Genome doubling, a common source of paralogous genes in fungi, provides an ideal setting in which to explore this link. Here we trace the fates of paralog doublets derived from the 100-Ma-old hybridization event that gave rise to the whole genome duplication clade of budding yeast. We find that paralog doublets involved in specific vesicle traffic functions and pathways are convergently retained across the entire clade. Vesicle coats and adaptors involved in secretory and early-endocytic pathways are retained as doublets, at rates several-fold higher than expected by chance. Proteins involved in later endocytic steps and intra-Golgi traffic, including the entire set of multi-subunit and coiled-coil tethers, have reverted to singletons. These patterns demonstrate that selection has acted to expand and diversify the yeast vesicle traffic apparatus, across species and time.


Assuntos
Saccharomyces cerevisiae , Saccharomycetales , Vesícula , Duplicação Gênica , Complexo de Golgi , Saccharomyces cerevisiae/genética
2.
Elife ; 102021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33464204

RESUMO

Laboratory experimental evolution provides a window into the details of the evolutionary process. To investigate the consequences of long-term adaptation, we evolved 205 Saccharomyces cerevisiae populations (124 haploid and 81 diploid) for ~10,000,000 generations in three environments. We measured the dynamics of fitness changes over time, finding repeatable patterns of declining adaptability. Sequencing revealed that this phenotypic adaptation is coupled with a steady accumulation of mutations, widespread genetic parallelism, and historical contingency. In contrast to long-term evolution in E. coli, we do not observe long-term coexistence or populations with highly elevated mutation rates. We find that evolution in diploid populations involves both fixation of heterozygous mutations and frequent loss-of-heterozygosity events. Together, these results help distinguish aspects of evolutionary dynamics that are likely to be general features of adaptation across many systems from those that are specific to individual organisms and environmental conditions.


Assuntos
Adaptação Biológica , Evolução Molecular , Mutação , Fenótipo , Saccharomyces cerevisiae/fisiologia , Diploide , Taxa de Mutação , Saccharomyces cerevisiae/genética
3.
Proc Natl Acad Sci U S A ; 112(9): 2800-5, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25691734

RESUMO

Eukaryotic cells use dynamins-mechano-chemical GTPases--to drive the division of endosymbiotic organelles. Here we probe early steps of mitochondrial and chloroplast endosymbiosis by tracing the evolution of dynamins. We develop a parsimony-based phylogenetic method for protein sequence reconstruction, with deep time resolution. Using this, we demonstrate that dynamins diversify through the punctuated transformation of sequence segments on the scale of secondary-structural elements. We find examples of segments that have remained essentially unchanged from the 1.8-billion-y-old last eukaryotic common ancestor to the present day. Stitching these together, we reconstruct three ancestral dynamins: The first is nearly identical to the ubiquitous mitochondrial division dynamins of extant eukaryotes, the second is partially preserved in the myxovirus-resistance--like dynamins of metazoans, and the third gives rise to the cytokinetic dynamins of amoebozoans and plants and to chloroplast division dynamins. The reconstructed sequences, combined with evolutionary models and published functional data, suggest that the ancestral mitochondrial division dynamin also mediated vesicle scission. This bifunctional protein duplicated into specialized mitochondrial and vesicle variants at least three independent times--in alveolates, green algae, and the ancestor of fungi and metazoans-accompanied by the loss of the ancient prokaryotic mitochondrial division protein FtsZ. Remarkably, many extant species that retain FtsZ also retain the predicted ancestral bifunctional dynamin. The mitochondrial division apparatus of such organisms, including amoebozoans, red algae, and stramenopiles, seems preserved in a near-primordial form.


Assuntos
Dinaminas , Evolução Molecular , Mitocôndrias , Dinâmica Mitocondrial/fisiologia , Animais , Arabidopsis , Caenorhabditis elegans , Cloroplastos/genética , Cloroplastos/metabolismo , Dictyostelium , Drosophila melanogaster , Dinaminas/genética , Dinaminas/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Saccharomyces cerevisiae , Schizosaccharomyces
4.
Zebrafish ; 10(1): 15-20, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23590399

RESUMO

Zebrafish (Danio rerio) is a popular vertebrate model organism largely deployed using outbred laboratory animals. The nonisogenic nature of the zebrafish as a model system offers the opportunity to understand natural variations and their effect in modulating phenotype. In an effort to better characterize the range of natural variation in this model system and to complement the zebrafish reference genome project, the whole genome sequence of a wild zebrafish at 39-fold genome coverage was determined. Comparative analysis with the zebrafish reference genome revealed approximately 5.2 million single nucleotide variations and over 1.6 million insertion-deletion variations. This dataset thus represents a new catalog of genetic variations in the zebrafish genome. Further analysis revealed selective enrichment for variations in genes involved in immune function and response to the environment, suggesting genome-level adaptations to environmental niches. We also show that human disease gene orthologs in the sequenced wild zebrafish genome show a lower ratio of nonsynonymous to synonymous single nucleotide variations.


Assuntos
Variação Genética , Genoma , Polimorfismo de Nucleotídeo Único , Peixe-Zebra/genética , Animais , Mapeamento Cromossômico , Mutação INDEL , Masculino , Espectrometria de Massas , Dados de Sequência Molecular , Análise de Sequência de DNA , Homologia de Sequência
5.
Nucleic Acids Res ; 40(18): 8965-78, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22821566

RESUMO

Nucleosome positioning maps of several organisms have shown that Transcription Start Sites (TSSs) are marked by nucleosome depleted regions flanked by strongly positioned nucleosomes. Using genome-wide nucleosome maps and histone variant occupancy in the mouse liver, we show that the majority of genes were associated with a single prominent H2A.Z containing nucleosome in their promoter region. We classified genes into clusters depending on the proximity of H2A.Z to the TSS. The genes with no detectable H2A.Z showed lowest expression level, whereas H2A.Z was positioned closer to the TSS of genes with higher expression levels. We confirmed this relation between the proximity of H2A.Z and expression level in the brain. The proximity of histone variant H2A.Z, but not H3.3 to the TSS, over seven consecutive nucleosomes, was correlated with expression. Further, a nucleosome was positioned over the TSS of silenced genes while it was displaced to expose the TSS in highly expressed genes. Our results suggest that gene expression levels in vivo are determined by accessibility of the TSS and proximity of H2A.Z.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica , Histonas/análise , Fígado/metabolismo , Nucleossomos/metabolismo , Sítio de Iniciação de Transcrição , Animais , Imunoprecipitação da Cromatina , Feminino , Inativação Gênica , Camundongos , Nucleossomos/química
6.
Hum Mutat ; 33(7): 1133-40, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22461382

RESUMO

Whole genome sequencing of personal genomes has revealed a large repertoire of genomic variations and has provided a rich template for identification of common and rare variants in genomes in addition to understanding the genetic basis of diseases. The widespread application of personal genome sequencing in clinical settings for predictive and preventive medicine has been limited due to the lack of comprehensive computational analysis pipelines. We have used next-generation sequencing technology to sequence the whole genome of a self-declared healthy male of Indian origin. We have generated around 28X of the reference human genome with over 99% coverage. Analysis revealed over 3 million single nucleotide variations and about 490,000 small insertion-deletion events including several novel variants. Using this dataset as a template, we designed a comprehensive computational analysis pipeline for the systematic analysis and annotation of functionally relevant variants in the genome. This study follows a systematic and intuitive data analysis workflow to annotate genome variations and its potential functional effects. Moreover, we integrate predictive analysis of pharmacogenomic traits with emphasis on drugs for which pharmacogenomic testing has been recommended. This study thus provides the template for genome-scale analysis of personal genomes for personalized medicine.


Assuntos
Genoma Humano/genética , Variação Genética/genética , Humanos , Índia , Masculino , Farmacogenética
7.
Zebrafish ; 7(2): 179-80, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20528264

RESUMO

The advancements in genomics technologies and the amenability to large-scale computational analysis have contributed immensely to the understanding of the zebrafish genome, its organization, and its functional correlates. Translating genomics information into biological meaning would require integration and amenability of data and tools. FishMap is a community resource for genomic datasets on zebrafish created with a vision to provide relevant and readily available information to zebrafish researchers. The present update of FishMap has kept up with the availability of the latest zebrafish genome assembly (Zv8). In this update, particular emphasis has been given to noncoding RNAs and noncoding RNA-mediated regulation in addition to genomic regulatory motifs, which are emerging areas of vertebrate biology. FishMap Zv8 update also features a sequence mapping and analysis server. Consistent with its commitment to make the information freely available to the community, FishMap features options to share data between compatible resources in addition to making it amenable to programmatic access. FishMap Zv8 update is available at http://fishmap2.igib.res.in.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Redes Reguladoras de Genes/genética , Genômica/métodos , Internet , Software , Peixe-Zebra/genética , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA